Potent family-18 chitinase inhibitors: x-ray structures, affinities, and binding mechanisms.
نویسندگان
چکیده
Six novel inhibitors of Vibrio harveyi chitinase A (VhChiA), a family-18 chitinase homolog, were identified by in vitro screening of a library of pharmacologically active compounds. Unlike the previously identified inhibitors that mimicked the reaction intermediates, crystallographic evidence from 14 VhChiA-inhibitor complexes showed that all of the inhibitor molecules occupied the outer part of the substrate-binding cleft at two hydrophobic areas. The interactions at the aglycone location are well defined and tightly associated with Trp-397 and Trp-275, whereas the interactions at the glycone location are patchy, indicating lower affinity and a loose interaction with two consensus residues, Trp-168 and Val-205. When Trp-275 was substituted with glycine (W275G), the binding affinity toward all of the inhibitors dramatically decreased, and in most structures two inhibitor molecules were found to stack against Trp-397 at the aglycone site. Such results indicate that hydrophobic interactions are important for binding of the newly identified inhibitors by the chitinase. X-ray data and isothermal microcalorimetry showed that the inhibitors occupied the active site of VhChiA in three different binding modes, including single-site binding, independent two-site binding, and sequential two-site binding. The inhibitory effect of dequalinium in the low nanomolar range makes this compound an extremely attractive lead compound for plausible development of therapeutics against human diseases involving chitinase-mediated pathologies.
منابع مشابه
Screening-based discovery of Aspergillus fumigatus plant-type chitinase inhibitors
A limited therapeutic arsenal against increasing clinical disease due to Aspergillus spp. necessitates urgent characterisation of new antifungal targets. Here we describe the discovery of novel, low micromolar chemical inhibitors of Aspergillus fumigatus family 18 plant-type chitinase A1 (AfChiA1) by high-throughput screening (HTS). Analysis of the binding mode by X-ray crystallography confirme...
متن کاملScreening-based Discovery and Structural Dissection
Family 18 chitinases play key roles in the life cycles of a variety of organisms ranging from bacteria to man. Very recently it has been shown that oneof themammalian chitinases is highly overexpressed in the asthmatic lung and contributes to the pathogenic process through recruitment of inflammatory cells. Although several potent natural product chitinase inhibitors have been identified, their...
متن کاملStructure-based exploration of cyclic dipeptide chitinase inhibitors.
Family 18 chitinases play an essential role in a range of pathogens and pests. Several inhibitors are known, including the potent inhibitors argadin and allosamidin, and the structures of these in complex with chitinases have been elucidated. Recent structural analysis has revealed that CI-4 [cyclo-(L-Arg-D-Pro)] inhibits family 18 chitinases by mimicking the structure of the proposed reaction ...
متن کاملHigh-resolution structures of a chitinase complexed with natural product cyclopentapeptide inhibitors: mimicry of carbohydrate substrate.
Over the past years, family 18 chitinases have been validated as potential targets for the design of drugs against human pathogens that contain or interact with chitin during their normal life cycles. Thus far, only one potent chitinase inhibitor has been described in detail, the pseudotrisaccharide allosamidin. Recently, however, two potent natural-product cyclopentapeptide chitinase inhibitor...
متن کاملCrystal structures of allosamidin derivatives in complex with human macrophage chitinase.
The pseudotrisaccharide allosamidin is a potent family 18 chitinase inhibitor with demonstrated biological activity against insects, fungi, and the Plasmodium falciparum life cycle. The synthesis and biological properties of several derivatives have been reported. The structural interactions of allosamidin with several family 18 chitinases have been determined by x-ray crystallography previousl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 286 27 شماره
صفحات -
تاریخ انتشار 2011